
���������
	����

The purpose of this report is to document the evolution of the Cyberscape Project and the

functionality I have added to fulfill the requirements for my honours project. This paper will provide

suitably detailed descriptions of what Cyberscape is, how it works, the adjustments I have made and

future development concerns. It will also document the obstacles faced and the design decisions which

were necessary to surmount them.

The Cyberscape Project began its existence as the joint honours project of Benjamin Hall and Jason

St. Cyr, two fellow Computer Science students. Although this report does include an overview of the

system, more detailed descriptions of components which are not included in this document may be

found in Jason's and Ben's reports respectively.

This report will begin with a complete overview of Cyberscape's communication system, both

before my contribution and after. This will be followed by a detailed overview of the different servers

used by the system, including their responsibilities and how they communicate with each other. Other

new Cyberscape elements which are not communication-related will be also highlighted. The report

will conclude with any observations I have made and challenges I have faced over the course of this

project.

Sarah-Jane Whittaker, #226 300
Page 1 of 34

���������
	�����������������

Of all those to whom credit and thanks is due, Benjamin Hall and Jason St. Cyr are the most

deserving. Without their patience and support, this project could never have been completed.

Contributing to Cyberscape has provided me with a challenging but enjoyable learning experience,

which is the most any student could ask of their honours project. I am grateful to them for the

opportunity they presented me and their guidance as I shaped it.

I would also like to thank my advisor, Dr. Micheal Weiss, for his understanding and willingness to

take me as an honours student. I selected my honours project topic at a later date than is usual, but Dr.

Weiss was generous in his offer to advise me despite the fact that he was already supervising a large

number of students. His interest and enthusiasm were essential, and his non-invasive style of

supervision was most appreciated.

The designers and programmers of the Eclipse IDE deserve a special commendation for their efforts.

As a former Rational employee who assisted in the development of Rational XDE for the Eclipse

platform, I was in a special position to witness its evolution from a somewhat raw and sparse tool into a

superior development environment. The fact that Eclipse can be downloaded at no expense is an added

advantage for frugal students such as myself. The development of this honours project would have

been far more difficult without Eclipse's assistance, and for that I am grateful.

Sarah-Jane Whittaker, #226 300
Page 2 of 34

���������
	����	������������

1. Introduction...5
2. An Overview of Cyberscape..6

2.1. Client, Server and VRML..6
2.2. How Worlds are Built...6
2.3. Users and User Interaction...7

3. Communication: Pre-Project..8
3.1. Requesting a Map...8

3.1.1. Work Items and Worker Pools...8
3.1.2. Map Session Threads..9
3.1.3. Clients and Servers...9

3.2. Reporting Navigation Data ...10
4. Communication: Post-Project..11

4.1. Why Change It?..11
4.2. Something Old, Something New...12
4.3. Packets...13
4.4. Implementation...14

4.4.1. Abstract Classes..14
4.4.2. Login Request Classes..15
4.4.3. Map Request Classes..16
4.4.4. Position And GPS Update Classes..17

4.4.4.1. PositionUpdateServer...18
4.4.4.2. GPSUpdateServer...19

4.5. reportHit.pl..20
4.5.1. Changes to the Script..20
4.5.2. Why Use This Method?..21

5. How To Create a New Server..22
5.1. Basic Concepts..22
5.2. Example: AdvertisingRequestServer...23

6. Other Cyberscape Objects..24
6.1. PropertyHelper..25
6.2. XMLFileAdjuster...25
6.3. CyberscapeApplication..25
6.4. CyberscapeLogin and CyberscapePanel..26
6.5. CyberscapeGPS and GPSGridCanvas...27

7. Project Goals (Accomplished and Otherwise)..27
7.1. Stated Goals..28

7.1.1. Project Goals...28
7.1.2. Personal Education Goals..28

7.2. Project Goal Status...28
7.3. Personal Education Goal Status...29

Sarah-Jane Whittaker, #226 300
Page 3 of 34

8. Observations and Challenges...30
8.1. The Limitations of VRML...30
8.2. Error Handling..31
8.3. Scalability..31

9. Conclusion..33

���������
	����������������������	����

Illustration 1 - The Basic Cyberscape Architecture..6
Illustration 2 - The Cyberscape VRML World...7
Illustration 3 - The Cyberscape GPS Viewer..8
Illustration 4 - The Browser's Invisible Frame Made Visible..11
Illustration 5 - The Cyberscape Login Panel...15
Illustration 6 - The Cyberscape Map Request Panel...17

Sarah-Jane Whittaker, #226 300
Page 4 of 34

���������
	���������������

If it ain't broke, don't fix it.

It takes a certain type of person to ignore this well-worn axoim, and both Ben Hall and Jason St. Cyr

fit the bill. Dissatisfied with the manner in which people view the internet, and have viewed the

internet since its conception, they decided to completely redesign it. Instead of the current two-

dimensional approach, where users view pages on seemingly disjoint servers and use search engines to

make sense of the system, a three-dimensional world is created instead. It provides an accurate view of

the internet by showing the relationships between servers (through their IP addresses) and providing

users with a navigation mechanism which is more intuitive than a search engine or a series of links.

Cyberscape's original design also included the concept of a community, where users could see and

interact with one another. Despite Ben and Jason's best efforts, their design was simply too broad to

implement completely within the time limit assigned to an honours project and the community aspect

had to be foregone. In essence, this report picks up where Ben and Jason's work left off. It will

document the implementation of a Cyberscape community, complete with user profiles, a tracking

system and instant messaging.

Not surprisingly, a community requires communication. During the implementation phase, it

became apparent that the bulk of the project had to be concentrated on abstracting the current

Cyberscape communication system and creating a new set of clients and servers, each with

responsibilities for a certain aspect of the Cyberscape experience. As a result, the focus of this report

will be on the communication system: its components, how they interact and their responsibilities. In

addition, this document will also include an overview of the Cyberscape system, a description on other

new elements which are not communication-related and any notes or items which should be mentioned.

Sarah-Jane Whittaker, #226 300
Page 5 of 34

������� �	��
�����
�� ����������
���� �"!$#�

%'&�()&�*,+.-�/10 24365�/87:9)/87 ;<0>=@?�A$BDC

Cyberscape components can be divided into two categories: what resides on the Cyberscape server

and what resides on a Cyberscape client's machine. The Cyberscape server is responsible for

answering user requests, receiving data from the client, updating other clients with that data (more on

this later) and inserting that data into a database for future use. The server runs several separate

programs, either smaller “servers” or programs designed to execute in the background, to accomplish

these tasks.

The future use in question comes from a Cyberscape client, whose primary function is to request

information from the server to build a three-dimensional VRML world which represents the internet.

The world consists of streets and buildings where street positions are based on IP addresses and

buildings bordering those streets represent web sites hosted on those IP addresses. A user can navigate

the world's pathways and click on buildings to select web sites and launch them automatically in a

browser.

%'&E%'&GFIHKJ LMHN7O+P=�QD;67R/TS�U'-.+V2

A Cyberscape client requests a map from the server by sending it the IP address of the “area” of the

internet which the user wants to visit. The server retrieves information from the database, creates an

XML file from that data and sends that file's URL back to the client. The client is then responsible for

Sarah-Jane Whittaker, #226 300
Page 6 of 34

WYXZXY[]_^E`baO^dcfehg�ikjRlnmporqna�\Ocfsutwv]xpoy`z_sOaR{|o1}1`~sRmycf^�o|sO^d[:`~o

using an XSLT stylesheet to transform the XML file into two different files: a WRL file which contains

the VRML world and an HTML file which will be used to display information about the objects in the

VRML world. Another HTML file which contains links to the previous two files is then launched in a

web browser, thus allowing the user to navigate and explore.

While walking around in the world, a client-side program transfers information about where the user

is moving and what websites he or she is browsing back to the server. The server organizes and stores

this information, then uses it to build future worlds. This process allows the server to provide the

world with features such as popular paths (highlighted in different colours) and popular web sites

(given in hit statistics).

���������	��
�����������	��
���������
������������ �

In this latest version of the Cyberscape project, a user must now log into the server with his or her

indentity and password (both stored in the server's database) before he or she may request a VRML

world. A user is also able to see other Cyberscape users who are in the same world and communicate

with them through the use of a “GPS” system. This system provides an arial view of the VRML world

Sarah-Jane Whittaker, #226 300
Page 7 of 34

!#"#"#$&%('*),+�'.-0/21�3�46587:9�;=<?>@9&)A%(B�+DC@9FEHGJI�KFLM/8)."0N

with the current positions of this user (in red) and

every other user in the same world (in yellow).

Every user's GPS receives position updates from

the server, which simply routes them when it

receives a position update from a client in the

same world.

The GPS also allows users in the same world

to communicate with one another. A list of

potential chat- mates is included at the side of the

GPS - all the user has to do is select a recipient,

type a message and send it to them. All messages are first passed through the server, which then

directs the text to the indended recipient. Hence, GPSs also receive message updates from the server in

addition to position updates.

��������� � 	�
������������
�������������� �"!#�����
Before this project was completed, a Cyberscape client would only communicate with the server for

one of two reasons: to request a map and to report navigation data.$
%'&(%*),+.-0/1+(2436567*8:9<;�9>=

?A@6BC@6BC@�DFE4GIH�JLKNM.OQPRTS(UVDFE4GIHCM.G"WXEYE[Z\P
A work item is a simple abstract object with two purposes: to perform a task and to return the data

resulting from that task. It's that simple. Work items must be added to a worker pool, which provides

the ability to store and execute a series of items in a specific order. Any object which adds an item to

the worker pool can choose to wait for the work item to finish its task, or choose not to.

For implementation purposes, any class that wants to qualify as a work item must implement the

Sarah-Jane Whittaker, #226 300
Page 8 of 34

]_^_^_`baIcedgfhcjilknmpo(qsrutwvTx#y zwv djaI{hf}|wvT~T���1��ilvh��vbd

interface WorkItem, with methods performWork() and getData(). The WorkerPool class is a self-

contained entity; any class can create an instance of a pool and add items to it which need to be

executed.�
�����������
	����������������������� 	"!#�

A session thread is responsible for monitoring a socket which any two Cyberscape objects are

currently using for communication. It is vital to note that a session thread does not create or destroy its

socket - it's the responsibility of the object creating the session to create the socket as well. There are

two basic types of session threads: a receive session and a transmit session. As their names suggest, a

receive session is responsible for waiting for a packet to arrive on the session socket and a transmit

session is responsible for sending a packet on the session socket.

In terms of the implementation, the abstract class MapSessionThread provides basic functionality

for sending on and receiving from sockets, while MapRequestSession extends MapSessionThread and

provides map request-specific data handling. The final two classes which are actually used,

ReceiveSession and TransmitSession, both extend MapRequestSession. Again, none of these classes

create the sockets they use; all of them have a parameter in their constructors for the session socket.

The MapSessionThread class implements the WorkItem interface, but the work which it performs is

determined by the extending subclass. In this case, a ReceiveSession's task is to attempt to receive and

a TransmitSession's task is to attempt to transmit.�
�����

�
�%$'&(�)�*��+,�-	.��!/����10*���2�

The physical Cyberscape server, which is a server in the truest networking sense, runs several

smaller programs to perform its duties. One of these (in this version of the project) is known as a

“server” as well; henceforth, when this section refers to a server, it is referring to this smaller program.

A server's responsibilities are to create a socket, listen indefinitely on that socket for a request from a

Cyberscape client and handle that request accordingly. The server stops monitoring its socket only

when it is told to shut down, at which point it destroys the socket and terminates. If the server receives

Sarah-Jane Whittaker, #226 300
Page 9 of 34

a request from a client, it is expected to send a response back. To do this, the server uses a transmit

session initialized with the socket it created and had been monitoring.

A client is designed to be a self-contained mechanism for communication with the server. It only

requires the information contained in the request from the object that wishes to send it to the server.

The client is responsible for creating a session socket, sending the request to the server and then using a

receive session (with the session socket) to wait for the server's response. The client then returns the

result of the request to the object that requires it and terminates.

In terms of the implementation, the abstract class MapRequestAbstraction provides core

functionality for building sockets, creating a worker pool, starting up and shutting down. Both

MapRequestClient and MapRequestServer extend this class and provide a port number on which their

sockets are created. A MapRequestClient is responsible for sending the IP address which the user

wishes to load to the MapRequestServer. In return, the MapRequestServer is responsible for creating

an XML file with the map's information and returning the URL of that XML file to the

MapRequestClient. The MapRequestClient and the MapRequestServer add a ReceiveSession and

TransmitSession to their respective worker pools to assist in their communication.

���������	��
����������������������������� �"!#�����

In this version of the project, reporting position and/or website hit data back to the server is far

simpler than requesting a map. The process begins with the VRML file itself, which inserts motion

triggers into the world. These triggers are assigned to street segments and are activated when the user

changes from one segment to another; there are no triggers on the black gaps between streets because

those are reserved for buildings. Once the trigger is activated, the issue is how to get that information

back to the Cyberscape server.

When a user is navigating in the VRML world, a web browser is helping him or her do that (as

shown in Illustration 1). The browser only appears to have two frames loaded: one for the Cyberscape

VRML world and one to display navigation and/or hit data. In reality, it has three frames – the third

Sarah-Jane Whittaker, #226 300
Page 10 of 34

runs along the bottom of the broswer and is set to be “invisible” by the HTML file which the browser

loads.

When a user activates a trigger, the VRML file sends a command to the invisible frame in the

browser to load a URL which contains the internet address of the Cyberscape server and the file

“reportHit.pl” which resides on that server. In this version of the project, reportHit.pl requires one

parameter: the user's position. This value is provided by the VRML file, which assigns an IP number

to each street segment in the world. When calling reportHit.pl, it simply includes the IP address that

was assigned to the street segment whose trigger was activated.

On the Cyberscape server, reportHit.pl simply creates a new text file which contains the position it

was provided with as a parameter and exits. A different helper program is later executed on the server

which collects all of these files, reads their contents and inserts their position data into the server's

database. This data will be used to construct future maps, which will contain updated information

about popular and not-so-popular routes and destinations in the world.

Sarah-Jane Whittaker, #226 300
Page 11 of 34

�����������	��
������������������������ !�����#"$�%�&�('����&)��*��+,��
�-.��/0
�1��!23���&)����

��������� � 	�
������������
������������������! �"##�
$&%(')%�*,+.-0/�+21&354�687:9<;

As was stated in the introduction, a community requires communication. The previous system

worked well for a single map-request-response scenario, but the addition of user profiles and awareness

of other users brings several new requirements with it. Among them are the following:

= additional servers must be introduced to handle different user activities

= the system must be able to receive and make more transmissions to accomodate high-traffic

functionality

= the system must be able to handle new communication scenarios

Cyberscape's new communication system retains much of the design of the original. Most of the

work went into finding elements of the original classes which would be useful to other objects and

formatting them into abstract classes with functionality that could be shared. However, this still

involved a major reworking and the changes require documentation.

$&%?>.%A@CBEDF659G+2HI3J4LK�M�NPO5@QBRDS659�+2HI3J4UTV62W

The core concepts surrounding work items, worker pools, session threads, clients and servers have

all been preserved in this version of the system because they are sound principles which have proven to

work well. To briefly recap,

= a work item must perform a task and return the resulting data

= a worker pool stores and runs a group of work items

= a session thread monitors a session socket on a communicating entity

= receive sessions listen for arriving packets and transmit sessions send packets along

= a server creates a socket, monitors it for requests and performs the necessary actions to fulfill those

requests

Sarah-Jane Whittaker, #226 300
Page 12 of 34

= a client is self-contained communication entity responsible for transmitting a request to a server

However, several aspects of the original system have been modified to allow for scalability and

different communication scenarios. The following alterations should be noted:

= one “smaller” server exists on the primary Cyberscape server for each user activity that requires

database queries or affects how other users see their world

= servers don't have to exist solely on the primary Cyberscape server – a remote Cyberscape client can

now launch a server as well to receive transmissions

= not all user-server communications require a response on the part of the server

= not all communication is user-server based; server-server is also necessary as some user actions may

affect more than one server

= every server has a matching client which will handle all aspects of communication with the server

and establishes exactly what requests can be sent

���������	��
�������

In addition to the changes described above, a new component has been added to the system to assist

in socket communication. Before a client can send data using a socket, that data must first be

converted into a string. Likewise, when a server receives data from its socket, it's in string form. Since

a server can handle several different requests, there is no guarantee as to the type of data contained in

the string. In addition, changing the contents and format of the data string would be messy and

difficult; alterations would have to be done in both the client and the server because that's where

encoding and decoding are performed respectively.

The packet object is designed to relieve the client and the server of this burden. Every server and

each client which waits for a response has a corresponding packet which is responsible for determining

the format of the transmitted data. The packet stores the type of request/response and the data necessary

for the server/client to perform its duties. Most importantly, the packet is responsible for converting

Sarah-Jane Whittaker, #226 300
Page 13 of 34

itself into a string before being sent through a socket and converting itself back into a packet once it's

received.

Thus, a typical transmission between a client and a server would occur in the following manner:

1. The client creates a new packet that corresponds to the request and sets the necessary data in the

packet

2. The client converts the packet into a string and sends it across the socket

3. The server receives the string transmission from its socket

4. The server converts the string back into packet form and extracts the type of request and the

necessary data

�����������	��
������������������

������������� �"!$#&%('*)+#-,/.�'�!0!$1�!

Of all the abstract communication classes, Packet is by far the simplest. The only implementation it

requires of its extending subclasses is the method convertToString().

The abstract class SessionThread provides basic initialization and the functionality to send and

receive data on a session socket.. This socket must be provided as a parameter in its constructor along

with a Packet whose data is handled differently depending on the session thread's type. A

TransmitSession simply sends the data through the socket, while a ReceiveSession sends the data only

if it did not receive a response on its socket in a certain period of time. SessionThread also implements

the WorkItem interface, which allows any extending subclass to be executed using a WorkerPool.

RequestAbstraction is the top-level abstract class for all clients and servers. It is responsible for

creating the object's session socket and worker pool and providing the functionality to destroy the

socket when the object is shut down. The abstract class RequestClient implements the ability to send

and receive or to just send data on its session socket. It makes the decision on which to do based on the

type of session thread which the extending subclass returns from abstract method

Sarah-Jane Whittaker, #226 300
Page 14 of 34

createSendSession(...): with a TransmitSession, the client simply sends; with a ReceiveSession, the

client sends and waits for a response. The abstract class RequestServer implements the functionality to

continuously monitor its session socket for transmissions until the server is shut down. A

RequestServer only uses TransmitSessions to respond to requests - it doesn't expect (and should not

receive) a confirmation transmission from a recipient. Both RequestClient and RequestServer use their

worker pools to execute their session threads and both choose not to wait for a TransmitSession to

complete its task. However, a RequestClient does wait for a ReceiveSession to execute so it can

examine the data contained in the response.

�������������	��
���������������������� �!�"���

Cyberscape now requires each user to log into the system and expects an update whenever he or she

logs out. The LoginRequestServer is responsible for handling both of these events. While a login

request requires a response from the server with the results of the attempt, a logout update from the

user does not require a response.

The packet classes used for these transmissions are

LoginRequestPacket and LoginResultPacket. The

former of these must contain the user's name, password

and whether he or she is logging in or logging out.. The

latter contains a single boolean which represents the

result of the user's login attempt.

To perform a login request or a logout update, a LoginRequestClient is initialized with the data

necessary for the action. The client then creates a LoginRequestPacket and does one of two things:

= if the client is performing a login request, it sends the packet on its session socket, creates a new

ReceiveSession with the same packet and adds the session to its worker pool to wait for the

LoginRequestServer's response

= if the client is performing a logout update, it creates a TransmitSession with the packet and adds the

Sarah-Jane Whittaker, #226 300
Page 15 of 34

#%$%$%&('*)�+-,.)0/214365�798;:=<?>A@CB=<C+0'*D.,FE=<G=1(H4/I3KJC,F3L<9$

session to its worker pool; note that in this case, the LoginRequestClient does not wait for a

response

Once the LoginRequestServer receives the data on its socket, it is converted back into a

LoginRequestPacket and examined. The server then does one of two things:

= in the case of a login request, the server checks that the user is not already logged in and that his or

her password matches the password stored in the database. If both of these conditions are met, the

user's request is granted and their name is added to a list of users who are logged in. The result of

the attempt is then put into a LoginResultPacket and sent back to the user by adding a

TransmitSession with the packet to the server's worker pool

= in the case of a logout update, the server simply removes the user from the list of logged-in users

and returns to monitoring its socket

In both of these cases, the LoginRequestServer also has to send one-way updates to the

PositionUpdateServer to tell it when users and entering and exiting the system. A complete description

of this process will be included in section 4.4.4.

Once the remote Cyberscape client receives the result of the user's login attempt, it either allows the

user to begin requesting VRML worlds or it displays an error message and asks the user to make

another login attempt.

�������������
	��������������������	��������

In order for a remote Cyberscape client to build a three-dimensional VRML world around a website

or an IP address, it needs the server to provide it with the relevant data contained in the database. The

MapRequestServer is responsible for receiving such requests, collecting the information from the

database, creating an XML file containing the data and returning that file's URL to the remote

Cyberscape client.

Sarah-Jane Whittaker, #226 300
Page 16 of 34

The packet classes used for these transmissions

are MapRequestPacket, which contains the user

name and the IP address that the user is requesting,

and MapResultPacket, whose only member is the

URL of the file which contains the retrieved data.

To perform a map request, a MapRequestClient is initialized with the data necessary to create a

MapRequestPacket. It then sends the packet on its session socket, creates a new ReceiveSession with

the same packet and adds the session to its worker pool to wait for the MapRequestServer's response.

Once the server receives the data on its socket, it converts it back into a MapRequestPacket and

retrieves the requested URL or IP address. The MapRequestServer then extracts the data from the

database, creates the XML file and adds the file's URL to a MapResultPacket. This packet is then sent

to the remote Cyberscape client by adding a TransmitSession with the packet to the server's worker

pool.

Once the URL is received by the remote client, the XML file is read and the information in it is used

to build a WRL file which contains the VRML world and an HTML file which contains information

about the objects in the world. Another HTML file with frames linking these two files is then loaded

into a web browser for the user.

When a user requests a map, the MapRequestServer also has to send a one-way update to the

PositionUpdateServer to tell it that a user will be entering a new map and possibly exiting an old one.

A complete description of this process will be included in the next section.

���������������	��
��
�������������	�������������! #"�$���%�$�

Cyberscape now provides users with a complete “GPS” system (shown in illustration 3) to facilitate

awareness of and communication with other users who are also in the same world. The GPS has two

sections: an arial view which displays every user's position in the map and an instant messaging area

which allows users to communicate with one another. Obviously, a user's GPS would required

Sarah-Jane Whittaker, #226 300
Page 17 of 34

&('('()+*-,/.01,32547698�:<;>=1?�@BA+CD?E.F*-GH0JID?LK�0EI�M>?HNO)<?<*-,
P+0J61?J'

updating if a user in the same map changed position or sent a message.

The PositionUpdateServer and GPSUpdateServer work in conjunction to handle these events and

update each user's GPS system. However, that they both do it from different locations; the

PositionUpdateServer runs on the primary Cyberscape server while each remote Cyberscape client runs

its own GPSUpdateServer. It is also vital to note that all communication with these servers is strictly

one-way. No one who sends an update to these servers should expect a response and no one who

receives an update from them should send a response either. As a result, both the PositionUpdateClient

and GPSUpdateClient classes create TransmitSessions with a server-specific packet, add them to their

worker pools and do not wait to receive anything.

The packet classes used for transmissions with these entities are, not surprisingly, named

PositionUpdatePacket and GPSUpdatePacket. Unlike the other packets wich have been described

previously in this document, these packets can represent one of many update types and the information

they contain can vary greatly depending on the type. Descriptions of each type of packet and the data

they contain will be included later in this section.

�����������������	��
������������������������ �"!�� �

The PositionUpdateServer is responsible for the following duties: tracking which users are currently

in which worlds; storing every users' remote address so their GPSUpdateServer can be contacted;

handling position updates for any user who moves and the other users in the same map; and routing

messages from the sender to the recipient. The PositionUpdateServer receives updates through its

session socket from the following entities and performs the following handling activities:

= The LoginRequestServer sends a “user logged in” update packet which contains the user's name and

remote address. Once received, the PositionUpdateServer adds the information to its list of current

user data

= The MapRequestServer sends a “user enters map” update packet which contains the user's name, the

requested map ID and the user's initial position in the map. In response, the PositionUpdateServer

Sarah-Jane Whittaker, #226 300
Page 18 of 34

must send a flurry of GPSUpdatePackets:

= one telling the user's GPSUpdateServer to close its old GPS viewer

= one telling the user's GPSUpdateServer to open a new GPS viewer with the user's

position and the other users' positions contained in the packet

= one telling the GPSUpdateServer for each user in the previous map (if it exists) to

remove the user given in the packet from their GPS viewers

= one telling the GPSUpdateServer for each user in the new map to add the user to their

GPS viewers at the position contained in the packet

= The Perl script “reportHit.pl” (changes to that part of the system will be described later in the

document) sends a “user changed position” packet which contains the user's name and new position.

Once received, the PositionUpdateServer must route this information to the GPSUpdateServer for

each user in the same map (including the one who moved) and tell them to update the given user's

position to the given value in the GPSUpdatePacket

= The GPS viewer sends a “user sent message” packet which contains the name of the sender, the

name of the recipient and the message text. Once received, the PositionUpdateServer retrieves and

uses the remote address of the recipient user to forward the message through a GPSUpdatePacket to

the recipient's GPSUpdateServer

= The LoginRequestServer sends a “user logged out” update packet which contains the user's name. In

response, the PositionUpdateServer removes the user from its list of current users and tells the

GPSUpdateServer for each user in the same map to remove the user contained in the

GPSUpdatePacket from their viewers

�����������������
	�������������������������

The GPSUpdateServer performs the following handling activities in response to the updates it

receives from the PositionUpdateServer on its session socket:

Sarah-Jane Whittaker, #226 300
Page 19 of 34

= a “close GPS” update prompts the server to dispose of the current GPS viewer

= an “open GPS” update prompts the server to create a new GPS viewer which contains the users at

the positions included in the GPSUpdatePacket

= a “user changes position” update prompts the server to update the user's position to the value given

in the packet

= a “user enters map” update prompts the server to add the user to the GPS at the position given in the

packet and to add the user's name to the list of possible message recipients

= a “user leaves map” update prompts the server the remove the user from the arial view and the list of

possible message recipients

Although one may assume that the GPSUpdateServer is also responsible for sending “user sends

message” updates to the PositionUpdateServer whenever the user wishes to transmit a message, that is

not the case. The actual GPS viewer uses a PositionUpdateClient to send the update to the server when

the user selects the “SEND” button in the GUI.

���������	��
��������������
��

�����������! �"$#&%�'�(�)+*�,-*."�(0/�1�2.3546*

Section 3.2 of this document included a detailed description of how a user's naviagtion data is

reported to the primary Cyberscape server using the script reportHit.pl in the previous version of the

project. In fact, very little about this process has been altered for this version of the project. To briefly

recap,

= the VRML world assigns a motion trigger and an IP address to each street segment in the map

= the browser which displays the VRML world contains an “invisible” (or hidden) frame for this

purpose

= when a user activates a trigger, the VRML world tells the invisible frame to load reportHit.pl's URL

Sarah-Jane Whittaker, #226 300
Page 20 of 34

However, reportHit.pl has undergone several changes. First, it now requires both the user's name

and new position as parameters, instead of just the position. Second, it is no longer in charge of writing

the position data out to a file. Instead, the script performs a local socket transmission to the

PositionUpdateServer with the user's name and new position as the data.

These changes raise two important questions: how does the VRML world provide report.pl with the

user's name and who now handles writing the received position to a file? The answer to the second

question is simple: a separate thread is executed by the PositionUpdateServer to write the information

to a file. The answer to the first question is a little more complex and involves returning to the stage

when the user has just logged in. Section 2.2 gave a complete analysis of how the VRML world is

built using a client-side XSLT stylesheet and a server-side XML file. The XSLT file contains the

following line:

���������	��
������������������������������	��������

Whenever a login attempt is successful, the user name included on this line is overwritten with the

name of the user that just logged in. Thus, when the XSLT file is used to create the VRML file, the

VRML file will also contain this line and be able to include the user's name as a parameter in its call to

reportHit.pl.

But why change the XSLT file when it's the VRML file that ultimately needs to contain the user's

name? First, the XSLT file is rather short and a typical VRML file is rather long; it doesn't take as

much time to edit the XSLT file. Second, a user may load multiple maps during his or her time using

Cyberscape; it is far more efficient to change the XSLT file once upon login than to change a VRML

file every time a user requests a new URL.

!#"%$&"(')"+*-,/.�02143657,98:1<;=3?>@,)ACBED

Although this method has proven itself, there are many different options and variations which could

have been implemented instead. Several of these were investigated, but eventually rejected because

they each introduced a flaw in the system. The following paragraphs will described each option that

Sarah-Jane Whittaker, #226 300
Page 21 of 34

was explored and explain why it was not implemented.

 The first thing to consider is that although VRML does provide motion sensors (which are

extremely handy), the world is limited in what it can do once a sensor has been triggered. Since the

world is loaded through a web browser, the options are limited to what can be done in that browser. As

a result, the “invisible” frame was introduced to allow the VRML world to use CGI to report on a

position change. This fact only leaves two options: a Perl script and a Java applet

Unfortuantely, a Java applet is not a good option; it is slow to execute because it needs to start a

virtual machine. In the VRML world, users can run around fairly quickly. This may cause motion

sensors to be triggered so fast that an applet cannot complete its task before another sensor is triggered

and the applet is reloaded. The result would be a series of lost updates which are never reported to the

PositionUpdateServer and a group of users with out-of-sync GPS viewers.

An obvious question at this point would be why the reporting mechanism has to be executed on the

Cyberscape server. Would a client-side mechanism not be more efficient because it could update the

user's GPS viewer locally before sending an update to the PositionUpdateServer for the rest of the

users? That would be an ideal situation, but it is not feasible at this point. Assuming that a Java applet

could function quickly enough to overcome the motion sensor issue, it would fail again because of

communication problems. Because an applet runs inside a virtual machine, it has very few permissions

with the actual machine it is operating on. As a result, it would not be able to connect to a socket or

communicate with the PositionUpdateServer. But what about a Perl script – would it not be able to

perform socket communication? Yes it could, but there is no guarantee that the user has the Perl

interpreter on his or her machine. Without a Perl interpreter, the script couldn't run and the

PositionUpdateServer would not receive any updates at all.

Cyberscape's current system performs its duties well; reportHit.pl executes quickly and sends

updates to the PositionUpdateServer reliably and efficiently. It will definitely stay in place until a more

efficient option presents itself.

Sarah-Jane Whittaker, #226 300
Page 22 of 34

��������� 	
� ���������� � ����� �����������

���! ��#"%$'&)(+*-,%.0/1*'243657&

The key to defining a request-specific series of session threads, clients and servers to to first create a

request-specific packet, and a response-specific one as well is the client requires it. A packet defines

the format of communication between a client and a server (or vice-versa): the types of requests which

a client may send, the data necessary for the server to fulfill that request and the information the server

will send in its response. All packets must extend the abstract superclass Packet to be sent by a

TransmitSession and a ReceiveSession. The packet should also implement a static method which

converts it from its string form (obtained by calling convertToString()) back into its packet form.

Once the packets has been created, the session threads should be defined. The types of session

threads which are implemented will determine the sequence of the communication that takes place.

Remember, a client which needs to receive a response will need a ReceiveSession that takes a request-

specific packet and returns a response-specific packet, but the server will only need a TransmitSession

to send the response-specific packet. However, a client that does not need a response will only need to

use a TransmitSession for the request-specific packet and the server will not need a session thread

because it is not transmitting anything back. All session threads should extend the abstract classes

TransmitSession or ReceiveSession and require a request or response-specific packet in their

constructors.

The last objects which should be created are the client and the server. Of these, the server's

behaviour is by far the most complex because it will need additional functionality to handle the

requests it receives. However, RequestClient and RequestServer provide all of the functionality for

socket communication – the most important thing is to make sure they both use the request and

response-specific packets at the right time.

Sarah-Jane Whittaker, #226 300
Page 23 of 34

���������	��
�������������������� �"!�$#&%(')��*,+,��!-�"./���0�����

This system was designed to make is fairly simple to implement a new client-server relationship. It

is apparent that as Cyberscape expands, new features will have to be added and those features will most

likely require communication between the remote Cyberscape client and the primary Cyberscape

server. To illustrate how simple this process is, consider the following hypothetical situation.

Cyberscape has been launched and is a huge worldwide success, but the creators of the project have

not been paid for their development efforts or for hosting the servers necessary to run the system.

Concerned about paying the rent, they decide to implement an advertising feature which will provide

the revenue to keep them afloat. How do they do it?

The first step is to analyze the data needed by both the client and the server, and the sequence in

which transmissions will be made. In this case, the client needs to tell the server that it requires an

image which represents the advertisement, and the server needs to send the URL of an advertising

image back to the client. From this, the following classes can be defined:

1 AdvertisingRequestPacket which has no parameters (just sending it tells the server what the client

needs)

1 AdvertisingResponsePacket which has one parameter for the URL of the advertisement's image

1 AdvertisingReceiveSession which requires an AdvertisingRequestPacket (in case it needs to resend)

and attempts to receive an AdvertisingResponsePacket

1 AdvertisingTransmitSession which requires an AdvertisingResponsePacket to send

1 AdvertisingRequestClient which creates an AdvertisingRequestPacket, sends the packet on its

session socket, adds a new AdvertisingReceiveSession to its worker pool and waits for the result

1 AdvertisingRequestServer which receives an AdvertisingRequestPacket, randomly chooses an

image, creates an AdvertisingResponsePacket and a new AdvertisingTransmitSession and adds the

session to its worker pool to send the result

Sarah-Jane Whittaker, #226 300
Page 24 of 34

Once the AdvertisingRequestClient receives an AdvertisingResponsePacket back from the server, it

simply returns the information contained in the packet to the class that executed the client and then

terminates. The class that executed the client then loads the URL into a new popup window, the

advertising takes place and the creators of Cyberscape get to pay their bills.

���������
	��������	�����������	 ������	������
Although the bulk of the work was focused on the communication system, a number of other

important items were designed and implemented to assist in the completion of the project's goals.

These objects perform essential tasks, and although the concepts behind many of them may seem

simple, that fact does not diminish their importance or the frequency of their use.
!#"$!�%'&)(+*',+&.-0/213,$45*',+&
The purpose of the PropertyHelper class is to provide a centralized and static means of accessing

Cyberscape properties (strings, integers and booleans) from the file cyberscape.properties. Currently,

this property file include the values of VRML tags, file names, database table identifiers and dialog

labels.

Any class which needs access to these values can use one of the PropertyHelper's static methods for

value retreival. This class also provides static methods for setting values and for re-writing them to the

cybserscape.properties file. The advantages to this system are impressive: values can changed without

having to edit and recompile the code (which is extremely useful with respect to internationalization)

and values entered by the user can be saved for later use. While the use of this class is presently

limited, it lays the foundation for individual user settings to be implemented in the future.
!768!:9�;=<?>A@B4#,�CEDGF�HAIJ-K,+&
Section 4.5.1 of this document includes a description of the how the XSLT file which translates the

server's XML file into the VRML world must be altered to contain the user's name. It's the

Sarah-Jane Whittaker, #226 300
Page 25 of 34

XMLFileAdjuster class that is responsible for this task in the implementation. The method in which

the XMLFileAdjuster performs its responsibility is not complex: it opens the file, reads the contents,

inserts the user's name (given in its constructor) and writes the data back to the file. However, it's

simplicity does not diminish the fact that if this is not done properly, the user's world will not load and

no user interaction will be available.�
���������
	�����
���������������������! ��#"%$
In the previous version of the project, the AWT dialog CyberscapePanel (seen in illustration 6) was

in essence the Cyberscape remote client; launching the dialog allowed the user to request maps from

the server and closing the dialog terminated the session. This version of the project requires a great

deal of synchronization: the login dialog, map request panel and client-side GPS server must all be

launched at the right time and in the correct order.

It is now the responsibility of the CyberscapeApplication class to represent the remote client and

handle every action required of a Cyberscape session. Currently, this involves the following:

1 create and display the CyberscapeLogin dialog

1 exit if the user's login atempt is unsuccessful

1 use the XMLFileAdjuster to insert the user's name into the XSLT file

1 launch the GPSUpdateServer

1 create and display the CyberscapePanel dialog for map requests

1 shut down the GPSUpdateServer when the user decides to exit�
�'&(�����
	�����
��������)*",+-��$.�($0/1���
	�����
��������2��($3���
The CyberscapeLogin class is an AWT dialog which allows the user to log in and begin a new

Cyberscape session (shown in illustration 5). It validates the user's information using a helper class

(CyberscapeLoginHandler), which in turn uses a LoginRequestClient to contact the remote Cyberscape

server's LoginRequestServer.

Sarah-Jane Whittaker, #226 300
Page 26 of 34

Although the CyberscapePanel was implemented in the previous version of this project, it

underwent a noteworthy adjustment in this version of the project. As a result, both it and

CyberscapeLogin share one important feature: they are now modal dialogs. The reason for this change

is the fact that the CyberscapePanel no longer represents the remote Cyberscape client; the

CyberscapeApplication does. As a result, the CyberscapeApplication needs to wait for both of the

dialogs to complete their execution. Specifically, the application needs the result of the user's login

attempt from the CyberscapeLogin panel before it launches the CyberscapePanel for map requests.

The application must also wait for the CyberscapePanel to close before it can consider the user's

session terminated and perform cleanup.

���������	��
�����������������������! "�����#���%$& '�(���)*�+�

The CyberscapeGPS class is an AWT dialog which provides the user with an arial view of his or her

VRML world and the ability to talk to other users in the same map. It is created and updated by the

remote client's GPSUpdateServer, which in turn receives updates from the Cyberscape server's

PositionUpdateServer. The dialog is comprised of two different areas: the GPS area (controlled by the

GPSGridCanvas) and an instant messaging area where the user can type a message and send it to

another user in the same map (shown in illustration 3). The CyberscapeGPS is responsible for sending

these messages to the PositionUpdateServer using a PositionUpdateClient; the server will then route

them to the recipient's GPSUpdateServer.

The GPSGridCanvas class extends the AWT Canvas class and provides a drawing surface to display

the streets and the users in the current map. It redraws itself when the CyberscapeGPS dialog is

redrawn as a whole or when GPSUpdateServer alerts the CyberscapeGPS that a user had changed

position in the map. The GPSGridCanvas is also responsible for calculating each user's position in the

viewer given user's position in the world, which is given as an IP address. All of the properties

necessary for this calculation are retreived from the PropertyHelper, and hence are easily adjusted.

Sarah-Jane Whittaker, #226 300
Page 27 of 34

���������
	����������������������� � !"�$#���%&��' �)(*' +,�-%&�.�0/ #��1��2
Every honours project proposal contains a detailed list of requirements, both for the project and for

personal education and experience. The proposal for this project was no different, but it was slightly

over-ambitious in its stated goals. The result is that this project satisfies the original vision and

contains the components necessary to fulfill all of its requirements. However, the time-consuming

tasks outlined in the previous sections prevented one of the stated goals from being implemented. In

addition, the limitations associated with VRML resulted in some adjustments to the manner in which

the interactive system was implemented and in the education received from this project. The details

surrounding these two exceptions will be explored in this section.3
4657498):<;=:?>A@CBEDF;HGJI
The following requirements have been taken from the original honours project proposal in verbatim.K
L<MNL<MNL7O
P?QSR�TVUXWZY[QH\^]`_

• To transform the Cyberscape virtual world from a map which remains static once the user has

requested it to a map which is dynamically updated with other users’ positions

• To allow Cyberscape users to see other users in the same map

• To allow Cyberscape users to communicate with other users in the same map

• To allow Cyberscape users to remain anonymous or invisible while inside the virtual worldK
L<MNLba7L7OcTAP$_dQfeV\A]hgciFj9UX\kWmlnQfeoY[QH\^]`_

• To gain a deeper understanding of how the Internet functions and the standards which Cyberscape

uses to gather information from the Internet and create its virtual world (i.e. XML, VRML)

• To learn how to mediate and co-ordinate in real-time between multiple clients and a central server

• To determine how to authenticate individual users and ensure no one can masquerade as another

Cyberscape user

Sarah-Jane Whittaker, #226 300
Page 28 of 34

���������	��
����������
���������������

From the detailed descriptions which have been given in the previous sections of this document, it is

apparent that all of the project goals have been met except for the very last: the ability for Cyberscape

users to remain anonymous and/or invisible while inside their world. As was stated at the beginning of

this section, it was a lack of time which prevented the implementation of this item. However, all of the

components which are necessary to perform this user function are in place. In fact, this aspect of the

system could be implemented in the following manner:

1 Include two radio buttons in the CyberscapeLogin dialog: one for anonymity and one for invisibility

1 Transmit the selection status of these options in the LoginRequestPacket to the LoginRequestServer

1 Forward the selection status of these options from the LoginRequestServer to the

PositionUpdateServer with the “user logged in” update which is currently sent anyway

1 Store the selection status of these options in the PositionUpdateServer with the user data that is

currently kept (user name and remote address)

1 Check the selection status of these options for each user when the PositionUpdateServer is

formatting an update for a client's GPSUpdateServer – an anonymous user's name should be omitted

and an invisible user should not be shown in the GPS whatsoever

���"!#���$�#�% �
'&�����()*���+����,-
'&.��
���������������

In addition to all but one of the stated project goals being met, all but one of the personal education

goals has also been fulfilled. However, this does not mean that the experience gained through this

project remains bound to the items listed in the proposal. Instead, a vast amount was learned about

other areas which were not originally envisioned but are nonetheless useful and noteworthy.

The original design for the community aspect of the Cyberscape system involved using the VRML

world to display other users walking around in the same map. Unfortuantely, VRML contained too

many limitations (which will be discussed later in this document) to allow the project to be

Sarah-Jane Whittaker, #226 300
Page 29 of 34

implemented this way. As a result, the GPS system was installed in its place and a “deeper

understanding” of VRML was achieved, but not in the form of practical experience.

Instead, the implementation of the GPS system provided an opportunity to learn more about the Java

AWT utility (included in the JDK) for building GUIs and about network socket communication. Both

of these were investigated extensively while rebuilding the new communication system and creating

the drawing system for the GPS viewer. With respect to personal education, the information learned

about these areas has already proven useful for other assignments and will continue to be worthwhile.

����������	�
������������������� ����������	 ��!�	��

"$#&%'#)(+*-,/.10324065378590&:1;8<=:8>@?1A�BC.

As was stated in the previous section, the original project proposal indicated that the existing VRML

world would be used to implement the Cyberscape user community. However, upon further

investigation it was concluded that VRML could not properly perform this task and the GPS system

was implemented instead. But what exactly are the reasons behind this decision?

The primary issue which prevents the VRML world from performing Cyberscape community

functions is its lack of an external updating mechanism. VRML does provide scripting facilities which

can be used to track events, such as a user's position. There are also ways to implement changes to

objects in the the world in response to an event. However, this functionality must be programmed into

the VRML file at load time and the event must originate from inside the world. Although an extensive

online search was conducted, no examples of stimulating events from external sources could be

located, nor any viable examples of multi-user VRML environments.

The fact is that when a VRML file is loaded, that's it. For its part, the file remains static and the web

browser's VRML plugin simply reads the file and then runs the world on its own. As a result, the

current communication system (which involves the remote client receiving updates from the server)

Sarah-Jane Whittaker, #226 300
Page 30 of 34

would not perform well because an updated VRML world would have to be completely reloaded in the

browser each time an update is received, thus wreaking havoc on the user's ability to navigate. Similar

updating suggestions which were given by interested parties, such as streaming user data to the client,

would also not work for the same reason.

One ingenious suggestion involved making the VRML world which the user loads small enough to

cover a single street segment. Changing position to a different segment would involve loading a new

map which would contain updated user information. Unfortunately, this idea is not viable. First, the

user would only see the segment around him or her - none of the other Cyberscape objects or users

would be visible. Second, it takes time to load a VRML world; users would not really be able to walk

so much as step, stop, step, stop.

Although VRML has performed its duty in both the initial and current version of the Cyberscape

project, it is apparent that the time for a replacement is fast approaching. One option would be to use a

utility such as Java3D. It allows the programmer to create a 3D graphics environment, provides

optimization through hardward-independent techniques and contains the functionality to dynamically

alter the world at runtime. One small drawback is that Java3D cannot provide picture-quality graphics,

which may prove tricky with respect to inserting advertising (especially billboards) into the world.

Another option could be to use an existing video game engine; it would definitely be able to handle the

necessary interaction between multiple users, but may introduce other limitations such as restricting the

user's choice of operating system.

���������	�
��������������������

At the moment, Cyberscape does not have a single mechanism for handling exceptions or any other

errors which may occur on a remote client or on the primary server. Although exceptions are caught

and errors are detected, the accompanying message is simply written to STDOUT instead of being

properly recorded. It should be considered a priority in future versions of this project to create a

logging mechanism for both the client and the server, and an automated reporting mechanism which

Sarah-Jane Whittaker, #226 300
Page 31 of 34

allows the client to send errors (perhaps in an email message) to the server as they occur. This would

create an extensive and informative resource for Cyberscape developers when they attempt to

troubleshoot and debug the system.

���������	��
��
������������

Implementing multi-user functionality in Cyberscape is one thing; making it work for more than a

couple of users at a time is quite another. There are several aspects of the system to consider when

investigating how Cyberscape could support a large number of users at the same time, but the

following subset should hightlight the most important items.

The first thing to consider in a system featuring high-traffic socket communication is the size of the

data that is being sent and the frequency of the messages being sent and received. The current

communication system performs extremely well on this point – both the data being sent and the

number of transmissions is minimized. The use of the Packet class ensures that all of the data

necessary to perform a request or a response can be converted to and from a string by a single entity.

This translates into fewer transmissions because all of the data can be sent in one fell swoop. In

addition, the Cyberscape's position updating mechanism is selective in which users it contacts – only

those who are in the same map as the user who changed position receive an update. This is far more

efficient and scalable than a system which chooses to broadcast its updates, regardless of whether a

user needs it or not.

The second aspect of the system which requires attention is the user of worker pools by each of the

smaller server programs which reside on the primary Cyberscaper server. When a worker pool is

initialized, it creates a certain number of “worker” objects which are responsible for executing any

work items which are added. If every one of a work pool's workers are busy, the work item is added to

an ordered collection to wait its turn. The problem which may arise from a large number of users is

that a server's worker pool could receive work items at a faster rate than it can execute them. Worker

pools are extremely useful and vital to keeping the system synchronized. Hence, a series of

Sarah-Jane Whittaker, #226 300
Page 32 of 34

experiments should be conducted to determine an optimal number of work items; not so many that the

worker pool is physically bogged down, but not too few that the worker pool falls behind in its

responsibilities.

The third major item to consider is the viability of using a web browser to execute Cyberscape's

three-dimensional world. The current version of the project uses Internet Explorer to load the VRML

map and it is prone to occasional sluggish and choppy navigation when multiple users are also using

the system and the client-side GPS server is receiving position updates. It should be consideration in

future versions of the project to investigate alternate software for displaying the world, especially if a

switch is made away from VRML to another graphics system.

���������
	�����������

Athough not every single goal given in the proposal was met, the fact remains that the completed

project does fulfill the original vision and meets all of the core requirements which were expected of it.

Cyberscape users can now see each each other; they can now communicate with each other; and they

can now watch each other navigate the world and move through the map with abandon while the GPS

maintains an updated viewpoint. And perhaps more importantly, the underlying communication

system has been extensively rebuilt to facilitate future development and expansion.

When Ben Hall and Jason St. Cyr first undertook this project, they were both looking for more than

a half-credit and a decent grade. They both wanted to focus their efforts on a project which interested

them and which they could pursue once their university careers were completed. It has been a pleasure

to continue their work and help to complete their ambitious vision. As a learning experience, this

project has been invaluable and that is the most a student could expect from any honours project.

Hopefully, Ben and Jason will consider this contribution to their work invaluable as well.

Sarah-Jane Whittaker, #226 300
Page 33 of 34

�����������	��
���

Java 3D.ORG FAQ (2003). http://www.j3d.org/faq/intro.html.

Gagnon, Real (2000). Java How-To. http://www.rgagnon.com/howto.html.

Hall, Benjamin (2002). Cyberscape: A Three-Dimensional View of the Internet.

Hall, Benjamin (2003). Private Communication.

Pillai, Premshree (2002). Socket Programming in Perl. http://premshree.resource-
locator.com/articles/perl_sockets.htm.

Reed, John A. Simple Example of Components, Containers, Layout Managers and Graphics Classes.
http://memslab.eng.utoledo.edu/~jreed/mime-6150/18nov97.pdf.

St. Cyr, Jason (2002). The Cyberscape Project: Pushing Internet Browsing and Data Mining to a New
Level.

St. Cyr, Jason (2003). Private Communication.

Weiss, Michael (2003). Private Communication.

Sarah-Jane Whittaker, #226 300
Page 34 of 34

